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The original application of wavelets in statistics was to the estimation of a curve
given observations of the curve plus white noise at 2J regularly spaced points. The
rationale for the use of wavelet methods in this context is reviewed briefly. Various
extensions of the standard statistical methodology are discussed. These include curve
estimation in the presence of correlated and non-stationary noise, the estimation of
(0–1) functions, the handling of irregularly spaced data and data with heavy-tailed
noise, and deformable templates in image and shape analysis. Important tools are
a Bayesian approach, where a suitable prior is placed on the wavelet expansion,
encapsulating the notion that most of the wavelet coefficients are zero; the use of
the non-decimated, or translation-invariant, wavelet transform; and a fast algorithm
for finding all the within-level covariances within the table of wavelet coefficients
of a sequence with arbitrary band-limited covariance structure. Practical applica-
tions drawn from neurophysiology, meteorology and palaeopathology are presented.
Finally, some directions for possible future research are outlined.
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1. Introduction

(a) The standard assumptions

The early papers on the use of wavelets in statistics concentrated on the standard
non-parametric regression problem of estimating a function g from observations

Yi = g(ti) + εi, i = 1, . . . , n, (1.1)

where n = 2J for some J , ti = i/n and εi are independent identically distributed
normal variables with zero mean and variance σ2. The basic method used was the
discrete wavelet transform (DWT); for convenience of reference, the notation we shall
use is set out in the appendix. The DWT of a sequence x will be written Wx.
In the problem (1.1), let (djk) be the DWT of the sequence g(ti). Consider the

DWT (ηjk) = WY of the observed data. Since W is an orthogonal transform, we
will have

ηjk = djk + εjk, (1.2)

where the εjk are, again, independent identically distributed normal random variables
with zero mean.
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On the face of it, the structure of (1.2) is the same as that of (1.1), and the DWT
has not done anything to help us. However, the wavelet transform has the property
that large classes of functions g likely to crop up in practice have economical wavelet
expansions, in the sense that g is well approximated by a function, most of whose
wavelet coefficients are zero. These do not just include functions that are smooth in a
conventional sense, but also those that have discontinuities of value or of gradient, and
those with varying frequency behaviour. This is another manifestation of the ability
of wavelets to handle intermittent behaviour, and is demonstrated by mathematical
results such as those discussed by Donoho et al . (1995).
The notion that most of the djk are zero, or may be taken to be zero, gives

intuitive justification for a thresholding rule; if |ηjk| � τ for some threshold τ , then
we set d̂jk = 0, on the understanding that ηjk is pure noise. For larger |ηjk|, the
estimate is either ηjk itself, or a value shrunk towards zero in some way that depends
only on the value of |ηjk|. Several papers (Donoho & Johnstone 1994, 1995, 1998,
and references therein) show that estimators of this kind have excellent asymptotic
adaptivity properties, and an example of the kind of result that can be derived is
given in § 2 below. However, for finite sample sizes, the basic recipe of thresholding
the DWT can be improved and extended.

(b) Prior information and modelling uncertainty

Before moving away from standard assumptions, we discuss a way in which the
ideas behind thresholding can be developed further. The properties of wavelet expan-
sions make it natural to model the unknown function g by placing a prior distribution
on its wavelet coefficients. We focus on one particular prior model and posterior esti-
mate (for alternative approaches, see, for example, Chipman et al . (1997) and Clyde
et al . (1998)).
The approach we consider in detail is that of Abramovich et al . (1998), who con-

sider a Bayesian formulation within which the wavelet coefficients are independent
with

djk ∼ (1 − πj)δ0 + πjN(0, τ2
j ), (1.3)

a mixture of an atom of probability at zero and a normal distribution. The mixing
probability πj and the variance of the non-zero part of the distribution are allowed
to depend on the level j of the coefficient in the transform. Different choices of these
hyperparameters correspond to different behaviours of the functions drawn from the
prior, and, in principle, these properties can be used to choose the properties of the
functions.
In practice, it is often more straightforward to have an automatic choice of the

hyperparameters, and this is provided by Johnstone & Silverman (1998) who use a
marginal maximum likelihood formulation. Under the prior (1.3), the marginal distri-
bution of the wavelet coefficients ηjk is a mixture of a N(0, σ2) and a N(0, σ2 + τ2

j ).
The likelihood of the hyperparameters can then be maximized, most conveniently
using an EM algorithm.
The posterior distribution of the individual wavelet coefficients is a mixture of

an atom at zero and a general normal distribution. The traditional summary of the
posterior distribution is the posterior mean, but, in this case, the posterior median
has attractive properties. Abramovich et al . (1998) show that it yields a thresholding
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rule, in that the posterior median of djk is only non-zero if the absolute value of
the corresponding coefficient ηjk of the data exceeds some threshold. Generally, the
posterior median will have a sparse wavelet expansion, and this is in accordance with
the construction of the prior. Also, the posterior median corresponds to the minimum
of an L1 loss, which is more appropriate for discontinuous and irregular functions
than the squared error loss that leads to the posterior mean.

2. Correlated and non-stationary noise

One important move away from the standard assumptions is to consider data that
have correlated noise. This issue was discussed in detail by Johnstone & Silverman
(1997). For many smoothing methods correlated noise can present difficulties, but,
in the wavelet case, the extension is straightforward.

(a) Level-dependent thresholding

Provided the noise process is stationary, one effect of correlated noise is to yield an
array of wavelet coefficients with variances that depend on the level j of the trans-
form. This leads naturally to level-dependent thresholding, using for each coefficient
a threshold that is proportional to its standard deviation. The variances are constant
within levels. Therefore, at least at the higher levels, it is possible to estimate the
standard deviation separately at each level, implicitly estimating both the standard
deviation of the noise and the relevant aspects of its correlation structure. The usual
estimator, in the wavelet context, of the noise standard deviation is

(median of |ηjk| on level j)/0.6745, (2.1)

where the constant 0.6745 is the upper quartile of the standard normal distribution.
The motivation for the estimate (2.1) is again based on the properties of wavelets: in
the wavelet domain, we can assume that the signal is sparse and so only the upper
few |ηjk| will contain signal as well as noise.

(b) Adaptivity results

Johnstone & Silverman (1997) derive theoretical justification for the idea of using
a method that uses thresholds proportional to standard deviations. Suppose that
X has an n-dimensional multivariate normal distribution with mean vector θ and
general variance matrix V , with Vii = σi. Let θ̂ be a suitable estimator obtained
by thresholding the Xi one by one, using thresholds proportional to standard devi-
ations. Under very mild conditions, the mean square error of θ̂ is within a factor of
(1 + 2 log n) of an ideal but unattainable estimator, where the optimal choice for each
θ is made of ‘keeping’ or ‘killing’ each Xi in constructing the estimate; furthermore,
no other estimator based on the data can improve, in order of magnitude, on this
behaviour.
In our setting, the vector X consists of the wavelet coefficients of the data. Risk

calculations for the ‘ideal’ estimator show that, for both short- and long-range-
dependent noise, the level-dependent thresholding method applied in wavelet regres-
sion gives optimally adaptive behaviour. For a wide range of smoothness classes of
functions g, the estimate’s behaviour is close to that of the best possible estima-
tor for each particular smoothness class. The smoothness classes include those that
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allow for intermittently irregular behaviour of the function; thus, the level-dependent
thresholded wavelet estimator automatically adjusts to the regularity (or intermit-
tent irregularity) of the unknown function being estimated.

3. The non-decimated wavelet transform

(a) The transform and the average basis reconstruction

An important development in the statistical context has been the routine use of the
non-decimated wavelet transform (NDWT), also called the stationary or translation-
invariant wavelet transform (see, for example, Shensa 1992; Nason & Silverman 1995;
Lang et al . 1996; Walden & Contreras Cristan 1998). Conceptually, the NDWT is
obtained by modifying the Mallat DWT algorithm as described in the appendix: at
each level, as illustrated in figure 7, no decimation takes place, but instead the filters
H and G are repeatedly padded out with alternate zeros to double their length. The
effect (roughly speaking, depending on boundary conditions) is to yield an overdeter-
mined transform with n coefficients at each of log2 n levels. The transform contains
the standard DWT for every possible choice of time origin.
Since the NDWT is no longer (1–1), it does not have a unique inverse, but the

DWT algorithm is easily modified to yield the average basis inverse (Coifman &
Donoho 1995), which gives the average of the DWT reconstructions over all choices
of time origin. Both the NDWT and the average basis reconstruction are O(n logn)
algorithms.

(b) Using the NDWT for curve estimation

In virtually every case that has been investigated in detail, the performance of
wavelet regression methods is improved by the use of the NDWT. The standard
paradigm is to perform the NDWT, and then to process each level of the resulting
coefficients using the particular method of choice, regarding the coefficients as inde-
pendent. Then the average basis reconstruction method is used to give the curve
estimate. This procedure corresponds to carrying out a separate smoothing for each
choice of time origin and then averaging the results, but the time and storage used
only increase by an O(logn) factor.
In the Bayesian case, it should be noted that the prior model for the wavelet

expansion will not be exactly consistent between different positions of the origin. If
a random function has independent wavelet coefficients with a mixture distribution
like (1.3) with respect to one position of the origin, then it will not, in general,
have such a representation if the origin is changed. The prior distributions cannot
be generated from a single underlying prior model for the curve, and so, strictly
speaking, the method corresponds to a separate modelling of the prior information
at each position of the origin.
Johnstone & Silverman (1998) investigate the use of the NDWT in conjunction

with the marginal maximum likelihood approach discussed above. Even in the case
where the original noise is independent and identically distributed, the n coefficients
of the NDWT of the data at each level are not actually independent. In the case of
correlated noise, even the standard wavelet coefficients are not, in general, actually
independent. However, good results are obtained by proceeding as if the NDWT
coefficients are independent, maximizing an as-if-independent likelihood function to
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Figure 1. (a) The ‘true’ ion channel signal for time points 1–2048. (b) The corresponding sec-
tion of generated data (on a smaller vertical scale). (c) The estimate obtained by the transla-
tion-invariant marginal maximum likelihood method. Reproduced from Silverman (1998) with
the permission of the author.

find the mixture hyperparameters at each level, and then using an average basis
reconstruction of the individual posterior medians of the wavelet coefficients. In a
simulation study the improvement over the fixed basis marginal maximum likelihood
method is substantial, typically around 40% in mean square error terms.

(c) A neurophysiological example

An important problem in neurophysiology is the measurement of the very small
currents that pass through the single membrane channels that control movement in
and out of cells. A key statistical issue is the reconstruction of a (0–1) signal from
very noisy, and correlated, data. The two levels correspond to periods within which
the membrane channel is closed or open.
In connection with their encouragement (Eisenberg 1994) of the application of

modern signal processing techniques to this problem, Eisenberg and Levis have sup-
plied a generated dataset intended to represent most of the relevant challenges in
such single-channel data. This generated example differs in kind from the usual kind
of simulated data, in that its underlying model is carefully selected by practitioners
directly involved in routine collection and analysis of real data. The reason for using
a generated dataset rather than an actual dataset obtained in practice is that in the
case of a ‘real’ dataset, the ‘truth’ is not known, and so it is impossible to quantify
the performance of any particular method.
The top two panels of figure 1 illustrate the data we have to deal with. The top

graph is the generated ‘true’ (0–1) signal, which is used to judge the quality of
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Figure 2. The true ion channel signal, and the curve obtained by applying the transla-
tion-invariant marginal maximum likelihood approach to the top three levels only. Rounding
the curve off to the nearest integer gives an excellent estimate of the original signal. Reproduced
from Johnstone & Silverman (1998) with the permission of the authors.

the reconstruction. Of course, the processing is done without any reference to this
information. The middle panel shows the actual data. The vertical scale is much
smaller than the top panel; the range of the displayed data is −3.1 to 4, and the
signal to noise ratio is about 1

3 .
The bottom panel is obtained by using the translation-invariant marginal maxi-

mum likelihood Bayesian procedure, as described in § 3 b above, and then rounding
off the result to the nearest of 0 and 1. Only the three highest levels of the wavelet
transform are processed, and the rest are passed straight through to the rounding
stage. The way in which this works out is illustrated in figure 2. The output from
the wavelet smoothing step is still fairly noisy, but its variance is sufficiently small
that the rounding step gives very good results.
It should be pointed out that rounding the original data gives very poor results;

about 28.6% of the points are misclassified, almost as bad an error rate as setting
every value to zero, which would misclassify 34.3% of points. The method illustrated
in the figures, on the other hand, achieves an error rate of only 2%; for fuller details
of numerical comparisons see Silverman (1998). This performance is as good as that
of the special purpose method designed by Eisenberg and Levis. Close examination
of figure 1 shows that the wavelet method faithfully recovers the true pattern of
openings and closings, except for three very short closings, each of which is only of
length two time points. The special-purpose method also misses these closings. The

Phil. Trans. R. Soc. Lond. A (1999)



Wavelets in statistics: beyond the standard assumptions 2465

way in which a general purpose wavelet method can match a special purpose method
that cannot be expected to work well in other contexts is particularly encouraging.

4. Dealing with irregular data

(a) Coefficient-dependent thresholding

So far we have considered the case of stationary correlated data, but the results
of Johnstone & Silverman (1997) give motivation for the treatment of much more
general correlation structures. Their theory gives support to the thresholding of
every coefficient in the wavelet array using a threshold proportional to its standard
deviation. If the original data are heteroscedastic, or have non-stationary covariance
structure, then these standard deviations will not necessarily even be constant at
each level of the transform.
A heteroscedastic error structure can arise in the data in several ways. For example,

it may be known that the covariance structure is of a given non-stationary form,
but this will not often apply in practice. Kovac & Silverman (1998) consider other
possibilities. Often, the original observations are on an irregular grid of points. One
can then interpolate or average locally to obtain regular gridded data in order to
use a wavelet approach. Even if the noise in the original data is independent and
identically distributed, the irregularity of the data grid will lead to data that are, in
general, heteroscedastic and correlated in a non-stationary way.
Another context in which heteroscedastic error structures occur is in robust ver-

sions of standard regression. Even if we start with a regular grid, downweighting
or eliminating outlying observations will lead to a heteroscedastic error structure or
to data on an irregular grid, and this will be discussed in § 4 c. A final possibility
considered by Kovac & Silverman (1998) is that of a number of data points that
is not a power of 2. Though other methods are available, a possible approach is to
interpolate to a grid of length 2m for some m and then, as in the case of irregular
data, the resulting error structure will be heteroscedastic.

(b) Finding the variances of the wavelet coefficients

In all these cases, it is important to find the variances of the wavelet coefficients
of the data given the covariance matrix Σ of the original data. Kovac & Silverman
(1998) provide an algorithm that yields all the variances and within-level covariances
of the wavelet coefficients. If the original Σ is band limited, which it will be in the
cases described above, then the algorithm will take only O(n) operations, for n = 2J

data points.
Using the notation for the DWT set out in the appendix, let Σj denote the variance

matrix of cj and Σ̃j that of dj . Then ΣJ = Σ by definition. From the recursive
definition of the cj and dj it follows that, for each j = J − 1, J − 2, . . . , 0,

Σj = Hj+1Σj+1(Hj+1)T (4.1)

and

Σ̃j = Gj+1Σj+1(Gj+1)T. (4.2)
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Note that this gives us not only the variances

σjk = Σ̃j
k,k

of the individual wavelet coefficients dj
k, but also the covariance structure of the

wavelet coefficients at each level. The sparsity structure of the matrices Hj+1 and
Gj+1 allows the calculations (4.1) and (4.2) to be carried out in O(nj) operations.
Hence, the complexity of the entire algorithm, deriving the variance matrices for all
j, is O(2J), and is also linear in the length of the wavelet filters and in the bandwidth
of the original variance matrix (see Kovac & Silverman (1998) for details).

(c) Robust estimation

Standard wavelet regression methods do not work well in the presence of noise
with outliers or with a heavy-tailed distribution. This is almost inevitable, because
the methods allow for abrupt changes in the signal, and so outlying observations are
likely to be interpreted as indicating such abrupt changes. Bruce et al . (1994) and
Donoho & Yu (1998) have suggested approaches based on nonlinear multi-resolution
analyses, but the algorithm of § 4 b allows for a simple method based on classical
robustness methods. The method works whether or not the original data are equally
spaced. As a first step, a wavelet estimator is obtained using the method of § 4 a,
using a fairly high threshold. Outliers are then detected by a running median method.
These are removed and the method of § 4 a applied again to produce the final estimate
(see Kovac & Silverman (1998) for a detailed discussion).
An example is given in figure 3. The data are taken from a weather balloon and

describe the radiation of the sun. The high-frequency phenomena in the estimated
signal are due to outlier patches in the data; these may be caused by a rope that
sometimes obscured the measuring device from the direct sunlight. It is interesting
to note that the robust estimator removes the spurious high-frequency effects, but
still models the abrupt change in slope in the curve near time 0.8.

5. Deformable templates

(a) Images collected in palaeopathology

We now turn to a rather different area of application, that of deformable templates
in image and shape analysis. There are many problems nowadays where an observed
image can be modelled as a deformed version of a standard image, or template. The
assumption is that the image is a realization of the template, perhaps with additional
variability that is also of interest. My own interest in this issue stems from a study
of skeletons temporarily excavated from a cemetery in Humberside. Of particular
interest to the palaeopathology group in the Rheumatology Department at Bristol
University is the information that can be gained about patterns of osteoarthritis of
the knee. Shepstone et al . (1999) discuss the collection and analysis of a considerable
number of images of the kind shown in figure 4, using the experimental set-up shown
in figure 5. Further details of the work described in this section are given by Downie
et al . (1998).
The important features of these bones as far as the osteoarthritis study is con-

cerned are the shape of the bone and the occurrence and position of various changes,
notably eburnation (polished bone, caused by loss of cartilage) and osteophytes (bony

Phil. Trans. R. Soc. Lond. A (1999)



Wavelets in statistics: beyond the standard assumptions 2467

1.0

1.5

2.0

ra
di

at
io

n

1.0

1.5

2.0

time

ra
di

at
io

n

0 0.2 0.4 0.6 0.8 1.0

(a)

(b)

Figure 3. (a) Thresholding without outlier removing: balloon data with a standard wavelet
regression estimator. (b) Thresholding after outlier removing: balloon data with a robust wavelet
estimator. From Kovac & Silverman (1998) with the permission of the authors.

outgrowths). The images are digitized as pixel images and are marked up by com-
parison with the original bone to label the pixels corresponding to the areas of these
changes. The aim of any study of the deformations is twofold: firstly, to give a stan-
dard mapping to relate positions on various bones; and secondly, to gain information
about the shape of individual bones. For the first purpose, we are interested only
in the effect of the deformation, but, for the second, the details of the deformation
itself are important.

(b) Models for deformations

Deformations can be modelled as follows. Let I and T be functions on the unit
square U , representing the image and the template, respectively. In our particu-
lar application, they will be 0–1 functions. The deformation is defined by a two-
dimensional deformation function f such that, for u in U , u+ f(u) is also in U . The
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Figure 4. A typical image of the femoral condyles from the distal end of the femur.
Reproduced from Downie et al . (1998) with the permission of the authors.

Figure 5. The experimental set-up for collecting the femur image data. Reproduced from
Downie et al . (1998) with the permission of the authors.

aim is then to get a good fit of the image I(u) to the deformed template T (u+f(u))
measuring discrepancy by summed squared difference over the pixels in the image.
The deformation f is a vector of two functions (fx, fy) on the unit square, giving

the coordinates of the deformation in the x and y directions. In our work, we expand
each of them as a two-dimensional wavelet series. Because it is reasonable to assume
that deformations will have localized features, this may be more appropriate than
the Fourier expansion used, for example, by Amit et al . (1991). In two dimensions
the wavelet multi-resolution analysis of an array of values (Mallat 1989b) yields
coefficients wκ, where the index κ = (j, k1, k2, (); this coefficient gives information
about the array near position (k1, k2) on scale j. Three orthogonal aspects of local
behaviour are modelled, indexed by ( in {1, 2, 3}, corresponding to horizontal, vertical
and diagonal orientation.
To model the notion that the deformation has an economical wavelet expansion,

a mixture prior of the kind described in § 1 b was used. Because the assumption of
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Figure 6. The wavelet coefficient positions and sizes of a typical deformation. (a) x wavelet
coefficients (i.e. showing the x-coordinate of the deformation); (b) y wavelet coefficients (i.e.
showing the y-coordinate of the deformation). The numbers denote the scale of the particular
coefficient, and are plotted at the centre of the support of the corresponding wavelet. The printed
size of each number indicates the absolute size of the wavelet coefficient. Adapted from Downie
et al . (1998) with the permission of the authors.

normal identically distributed errors is not realistic, we prefer to consider our method
as being a penalized least-squares method with a Bayesian motivation, rather than
a formal Bayesian approach. A particular bone unaffected by any pathology was
arbitrarily designated as the template. An iterated coordinatewise maximization is
used to maximize the posterior likelihood.

(c) Gaining information from the wavelet model

Figure 6 demonstrates the information available in the wavelet expansion of a
particular deformation. Only 27 of the possible 2048 coefficients are non-zero, indi-
cating the extreme economy of representation of the deformation. For each of these
coefficients, a number equal to the level j of the coefficient is plotted at the position
(k1, k2). The size at which the number is plotted gives the absolute size of the coeffi-
cient; the orientation ( is indicated by colours invisible on this copy, but available on
the World Wide Web version of Downie et al . (1998) at www.statistics.bristol.ac.uk/
∼bernard.
The figure shows that most of the non-zero coefficients are near the outline of

the image, because of the localization properties of the wavelets. At the top of the
image in the y component, coefficients at all resolution levels are present, indicating
the presence of both broad-scale and detailed warping effects. The deformation is
dominated by two coefficients, showing that the main effects are a fairly fine-scale
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effect at the middle of the top of the image, and a larger-scale deformation centred
in the interior of the image. The full implications of this type of plot remain a
subject for future research; in some contexts, the coefficients and their values will be
candidates for subsequent statistical analysis, while elsewhere they will be valuable
for the insight they give into the position and scale of important aspects of the
deformation.

6. Discussion

Although there has been a recent explosion of interest in the use of wavelets in statis-
tics, there are very many open questions and issues, both theoretical and practical,
to be addressed before the full value of wavelets in statistics is understood and appre-
ciated. Some other issues, not discussed here, will of course be raised in the other
papers in this issue.
Even for the standard regression problem, there is still considerable progress to be

made in determining the appropriate way to process the wavelet coefficients of the
data to obtain the estimate. In this paper, attention has been focused on methods
that treat coefficients at least as if they were independent. However, it is intuitively
clear that if one coefficient in the wavelet array is non-zero, then it is more likely
(in some appropriate sense) that neighbouring coefficients will be also. One way of
incorporating this notion is by some form of block thresholding, where coefficients
are considered in neighbouring blocks (see, for example, Hall et al . 1998; Cai &
Silverman 1998). An obvious question for future consideration is how to integrate
the ideas of block thresholding and related methods within the range of models and
methods considered in this paper.
It is clear that a much wider class of Bayesian approaches will be useful. There are

two related directions to proceed in. As in most statistical contexts where Bayesian
methods are used, careful thought about priors within the DWT and NDWT contexts
is needed in order to genuinely model prior knowledge of unknown functions. More
particularly, the NDWT frees the modelling from the choice of origin, but one might
wish to go further and move away from the powers of two in the scale domain. The
atomic decomposition models discussed, for example, by Abramovich et al . (2000),
may be a good starting point here.
The present paper has discussed the NDWT, but there are many extensions and

generalizations of the basic DWT idea using other bases and function dictionaries
to express the functions of interest. In a statistical context, some consideration has
been given to the use of multiple wavelets (Downie & Silverman 1998) and ridgelets
and other functions (Candès & Donoho, this issue). There is much scope for gaining
a clear understanding of the contexts in which more general function dictionaries,
and developments such as wavelets for irregular grids (see, for example, Daubechies
et al ., this issue) will be of statistical use. In the more traditional regression context
(see, for example, Green & Silverman 1994), semi-parametric methods, which use
a combination of classical linear methods and non-parametric regression, are often
useful. Similarly, in the wavelet context, there may well be scope for the use of
a combination of ideas from wavelets and from other regression methods, to give
hybrid approaches that may combine the advantages of both.
Until now, most of the work on wavelets in statistics has concentrated on the

standard regression problem. There has been some work on statistical inverse prob-
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Figure 7. The discrete wavelet transformation of a sequence y.

lems (see, for example, Abramovich & Silverman 1998) and on time-series analysis
(see, for example, Walden & Contreras Cristan 1998; Nason & von Sachs, this issue).
However, it is important to extend the use of wavelets to a much wider range of
statistical problems. One of the major advances in statistics in recent decades has
been the development and routine use of generalized linear models (see, for example,
McCullagh & Nelder 1989). There has been a considerable amount of work in the
application of penalized likelihood regression methods to deal non-parametrically
or semi-parametrically with generalized linear model dependence (see, for example,
Green & Silverman 1994, ch. 5 and 6), and it is natural to ask whether wavelet
methods can make a useful contribution. One common ingredient of generalized lin-
ear model methods is iterated reweighted least squares (see, for example, Green
1984), and, in the wavelet context, any implementation of an iterated least-squares
method will require algorithms like that discussed in § 4 b above.
Above all, the greatest need is for advances in theoretical understanding to go

hand-in-hand with widespread practical application. The wide interest in wavelets
demonstrated by the papers in this issue indicates that wavelets are not just an
esoteric mathematical notion, but have very widespread importance in and beyond
science and engineering. Of course, they are not a panacea, but as yet we have only
made a small step in the process of understanding their true statistical potential.
The author gratefully acknowledges the financial support of the Engineering and Physical Sci-
ences Research Council (UK) and the National Science Foundation (USA). The comments of
Graeme Ambler, Guy Nason and Theofanis Sapatinas on previous versions were greatly appre-
ciated.

Appendix A. The discrete wavelet transform

In order to define notation, it is useful to review the standard discrete wavelet trans-
form algorithm of Mallat (1989a, b). For further details see any standard text on
wavelets, such as Daubechies (1992) or Chui (1992). The transform is defined by
linear high- and low-pass filters G and H, specified by coefficient sequences (gk) and
(hk), respectively. For any sequence x, we have, for example:

(Gx)k =
∑

i

gi−kxi.

The coefficient sequences satisfy gk = (−1)kh1−k, and have finite (and usually short)
support. Denote by D0 the ‘binary decimation’ operator that chooses every even
member of a sequence, so that (D0x)j = x2j .

The discrete wavelet transform (DWT) of a sequence y of length 2J will then be
carried out as in the schema shown in figure 7. The vectors cj and dj are the smooth
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and the detail at level j, and are of length nj , where nj ≈ 2j , depending on the
treatment of boundary conditions. We denote by Hj and Gj the nj−1 ×nj matrices,
such that cj−1 = Hjc

j and dj−1 = Gjc
j . The data vector y is decomposed into

vectors of wavelet coefficients dJ−1, dJ−2, . . . , d0, c0, also written as an array djk or
Wy.
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